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Perturbation expansions of the axial next-nearest- 
neighbour Ising and asymmetric four-state 
clock models 

Michael N Barber 
Department of Applied Mathematics, University of New South Wales, PO Box 1, Kensing- 
ton, NSW 2033, Australia 

Received 12 August 1981 

Abstract. The axial next-nearest-neighbour Ising (ANNNI) and four-state asymmetric clock 
(4ASC) models are investigated by perturbing about points at which they reduce to simple 
nearest-neighbour king models. These limits are (a) for the ANNNI model-(i) small 
nearest-neighbour interaction, .TI, in the x direction and (ii) small next-nearest-neighbour 
interaction, J2, in the x direction, and (b) for the 4ASC model small asymmetry, A. In the 
limit J 1  .+ 0, the phase boundary is located to first order in .TI and found to be king-like. In 
the limit J2+ 0, the behaviour to second order in J2 is more complicated but is identical to 
that found to second order in A for the 4ASC model. These results are discussed in the light 
of other recent work. 

1. Introduction 

Systems exhibiting, or apparently exhibiting, incommensurate/commensurate tran- 
sitions are currently of considerable interest; for a recent review see Villain (1980). In 
such a transition a commensurate phase with long-range order ‘melts’ to an incom- 
mensurate or ‘floating’ phase. The latter phase is characterised by a spatially modulated 
order parameter, the wavevector of the modulation being incommensurate with the 
underlying lattice. In two dimensions, an incommensurate phase, in addition, exhibits 
an algebraic decay of the order parameter correlation function and thus is expected to 
be similar to the low-temperature phase of the planar rotor model. 

In an attempt to understand incommensurate/commensurate transitions in more 
detail, particularly in two dimensions, attention has focused on two simple models: the 
axial next-nearest-neighbour Ising or ANNNI model and the asymmetric clock models. 

In two dimensions, the dimensionality of interest here, the ANNNI model is specified 
by the Hamiltonian 

where the sum is over all sites of a square lattice, each site being populated by an Ising 
spin siSj(=*l). All coupling constants, Ji, i = 0, 1 ,2 ,  are positive so that the nearest- 
neighbour interactions (Jo, J1) are ferromagnetic while the axial next-nearest-neigh- 
bour interactions (-.I2) are antiferromagnetic. It is this competition which leads to an 
incommensurately ordered phase for certain values of the couplings and temperature. 

0305-4470/82/030915 + 24$02.00 @ 1982 The Institute of Physics 915 



916 M N Barber 

The three-dimensional version? of the model was originally proposed by Elliot (196 1) 
to describe the modulated phase observed in some rare earths. The revival of interest 
stems from the work of Bak and von Boehm (1979, 1980), who explored the phase 
diagram within mean field theory, and of Hornreich et a1 (1979) who initiated a Monte 
Carlo study which was extended and refined by Selke and Fisher (1980). Other 
investigations, some of which will be discussed in more detail below, have been carried 
out by Fisher and Selke (1979, 1981), Huse et a1 (1981), Villain and Gordon (1980), 
Rujan (1981), Villain and Bak (1981), Barber and Duxbury (1981a, b), Peschel and 
Emery (1981), Selke (1981), Williams et a1 (1981), Pesch and Kroemer (1981). The 
phase diagram which has emerged from this work is depicted in figure l ( a ) ,  where the 
upper Lifshitz point remains controversial (see § 5 ) .  

P 

Figure 1. ( a )  Schematic phase diagram of the d = 2 ANNNI model: F: ferromagnetically 
ordered phase, A: antiphase of alternating + +-- . . . columns, P: paramagnetic and I :  
incommensurately modulated (floating phase). ( b )  Schematic phase diagram of d = 2, 
~ A S C  model: F: ferromagnetic phase, A: antiferromagnetic phase; cohmns alternatively 
ni = 0, 1,2,3,0,1,2,  . . . , P: paramagnetic and I: incommensurate phase. 

The other class of simple models exhibiting incommensurate/commensurate tran- 
sitions are the asymmetric p-state clock models (p  a 3) introduced recently by Ostlund 
(1981) and studied subsequently by Cardy (1981), Huse (1981) and Yeomans and 
Fisher (1981). The Hamiltonian of the p-state asymmetric clock model (henceforth 
denoted the p ~ s c  model) is given by 

H = -J cos[27r(ni - nj - rij + A ) / p ] ,  
(i,i) 

(1.2) 

where the sum is now over the bonds of a square lattice, p is an integer and the integers 
ni and nj range between 0 and p - 1. The vector rij is the unit vector between sites i a n d j  
and we shall follow Ostlund and take A = Aex, along the x axis. (Arbitrary A has been 
considered by Cardy (1981).) For A = 0, equation (1.2) reduces to the Hamiltonian of 
the conventional clock or Z,-models studied by several authors (see e.g. JosC et aZ1977, 
Elitzur et a1 1979, Cardy 1980). In this paper, we shall be concerned only with the 

i The three-dimensional ANNNI model differs from (1.1) only in the nearest-neighbour interaction now being 
along the bonds of a simple cubic lattice-the antiferromagnetic interaction remains axial, along one of the 
spatial axes. 
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four-state asymmetric clock ( ~ A S C )  model, which for A = 0 reduces to two independent 
Ising models. The phase diagram suggested by Ostlund (1981) for this model is shown 
schematically in figure lib). 

The main aim of this paper is to enquire to what extent the behaviour of these 
models can be inferred from an analysis of their perturbation expansions about limits at 
which they reduce to simple Ising models. These limits are for the ~ A S C  model (as noted 
above) A = 0 and for the ANNNI model (i) J2 = 0 and (ii) J1 = 0. 

This approach was suggested by similar analyses of the eight-vertex model 
(Kadanoff and Wegner 1971), Ashkin-Teller model (Zittartz 1981a) and the square- 
lattice Ising model with competing nearest- and (diagonal) next-nearest-neighbour 
interactions (the NNINNN model) (Barber 1979). In all three examples, the known or 
expected critical behaviour could be inferred from the lowest non-trivial order of the 
perturbation expansions of their free energies about the points at which the models 
decoupled into simple Ising models. These successes suggest that a similar analysis of 
the ANNNI and ~ A S C  models could be informative. The essential features which emerge 
from the analysis can be summarised as follows. 

To first order in J2 at fixed J1, Jo, we obtain, as expected, an Ising line, the critical 
temperature of which accords well with that of Monte Carlo calculations (Selke and 
Fisher 1980, Selke 1981) and (in a highly anisotropic limit) with the quantum Hamil- 
tonian results of Barber and Duxbury (1981a, b). On the other hand, this analysis 
shows that the phase boundary obtained (Hornreich et a1 1979) from a Muller- 
Hartmann-Zittartz (1977) style approximation for the interfacial tension is not exact. 

Less expected is the behaviour we infer for small J1. Here the second-order 
perturbation expansion is reproduced by a free energy of the form 

-pf(Jo, J1, J2) z= -~A' [ i2~" 'Q(~4 / i ' 'w ' ) -~2 ] /~ (~ ) ,  (1.3) 

where A' is the amplitude of the specific heat for J1 = 0, 

w = tanh pJ1, 
(Y = a w 2 + ~ ( w 3 ) ,  

with the coefficient a depending on Jo and 5 2 ,  

i1.6) 

(1.7) 

4 = 2 - ( Y - - 4 = ; + 0 ( w  2 ) 

i = [ T -  ~ c ( W ) l I ~ c ( O )  = [ T -  ~ c ( 0 ) 1 / ~ c i 0 ) + 0 ( w 2 ~ ,  

and 

with T c ( w )  the critical temperature at finite J1. As z -* 0, the scaling function Q ( z )  
behaves as 

(1.8) Q ( z )  = 1 + Qlz + O(z2) .  

If (1.3) is indeed an exact representation of the free energy for arbitrary J1, it has 
some interesting implications. Equation (1.6) implies that J1 is a relevant variable, 
presumably driving the system to a critical behaviour distinct from the Ising behaviour 
occurring when J1= 0. On the other hand, (1 -3) suggests that for 

(1.9) t >> w4/' - J ! / 3  
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the ANNNI model should exhibit an effective critical behaviour characterised by 
non-universal ‘effective’ exponents, only crossing over to the true critical behaviour for 
t ~ J y ’ ~ .  The nature of this behaviour and the key question whether or not this 
behaviour is the result of a transition to a floating incommensurately modulated phase 
is, of course, not answered by (1.3) in the absence of any knowledge of the behaviour of 
Q ( r )  for large z ,  i.e. T +  T J w )  at fixed w. 

However, an identical analysis of the ~ A S C  model yields the same conclusion: the 
second-order perturbation expansion is reproduced by (1.3) with now w = O(A), A 
being the asymmetry parameter. Indeed, (1.1) can be rewritten in a form (see § 4) that is 
remarkably similar to the Hamiltonian of the ~ A S C  model when written in spin 
variables. 

These considerations lead us to conclude that if either the ~ A S C  model has a floating 
phase for arbitrarily small asymmetry or the ANNNI model has a floating phase for 
arbitrarily large K = J2 f J1 then the other must. Unfortunately, as is apparent from figure 
1 and as we discuss in more detail in § 5 ,  the existing evidence for the extent of a floating 
phase in these models is both conflicting and inconclusive. 

The remainder of the paper is arranged as follows. In the next section, we discuss 
the limit J2 -P 0 of the ANNNI model which is relatively straightforward. The more 
complex and interesting limit J 1  + 0 is treated in 0 3. In § 4, we formulate the ~ A S C  

model in spin language to reveal its similarity with the ANNNI model. The perturbation 
expansion of this model to second order in the asymmetry is also discussed in § 4. A 
concluding discussion in 9 5 draws the various threads together and incorporates our 
results with other recent work on these models. Several technical and more mathema- 
tical aspects are relegated to several appendices. 

2. ANNNI model for small Jz 

2.1. First-order perturbation expansion 

We consider first the expansion of the free energy of the ANNNI model for small 
next-nearest-neighbour interaction, JZ. Thus we decompose (1.1) as 

where 

(2.2) 

is the Hamiltonian of the anisotropic nearest-neighbour Ising model on a square lattice 
and 

We can then write the partition function 
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where ( )o denotes an ensemble average with respect to Ho. On expanding 

=(cosh K d N (  1 - w2 1 si,isi+2.i + O( w ;)) 
(Li) 

where N is the total number of sites and 

w2 = tanh PJz, 

the required expansion of the free energy (with Ki = > 0,  i = 0, 1,2) 

-Pf (KO, K1, K2) = lim 
N-CC 

(2.7) 

follows immediately. Explicitly we obtain 

where the leading term is the Onsager (1944) free energy of (2.2) and the coefficient of 
w2, 

ro(2,o) = ( ~ 0 , 0 ~ 2 . 0 ) 0 ,  (2.9) 

is the next-nearest-neighbour correlation function of (2.2) in the x direction. This is 
known for arbitrary KO and Kl (see e.g. McCoy and Wu 1973) and can be expressed as a 
(2 x 2) determinant whose elements are given by elliptic integrals. These results allow, 
in principle, the determination of the shift in the critical temperature to first order in Jz 
for arbitrary Jo and J1. We shall however restrict our discussion to two cases: isotropic 
nearest-neighbour interactions (Jo = J 1 )  for which there is Monte Carlo data (Selke and 
Fisher 1980, Selke 1981) and series results (Redner unpublished) and the highly 
anisotropic limit relevant to the quantum Hamiltonian formulation of Barber and 
Duxbury (1981a). 

2.2. Shift in T,-isotropic nearest-neighbour interactions 

To determine the effect of non-zero K2 on the critical behaviour we expand the singular 
point of (2.8) (with KO = K1 = K) near the critical temperature K, given by 

sinh 2Kc = 1. (2.10) 

The leading-order term behaves as (Onsager 1944) 

pfo(K) = A(AK)’ 1nlAKI + . . . (2.11) 

as AK = Kc - K + 0 and A = 4/7r, while r0(2, 0) has the expansion (Fisher and Burford 
1967) 

r0(2, 0) = (1 -4 /r2)  + (16h/r2)AK lnlAK1 +O(AK). (2.12) 
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Hence the singular part of (2.8) behaves for small AK as 

pfs(Ko=K,K1 = K , K Z ) ~ A ( A K ) 2 1 n l A K l + ~ Z ( 1 6 ~ ~ / ~ 2 ) A h K  lnlAKl+ . . . (2.13) 

The corrections here are either O(w:) or o(AK In AK), all non-singular terms being 
absorbed into the regular part of the free energy. The expansion (2.13) is consistent 
with the expansion to first order in w z  of 

pfs(K, K, K2)  = A(AKl2 1nlAkI +O(Ak2)  

A K  = AK +2JZw2/.rr + O(w: j .  
with 

(2.14) 

12.15) 

Equation (2.14) thus shows that to first order in K z ,  the ANNNI model continues to 
exhibit Ising-like behaviour (e.g. a logarithmically divergent specific heat) at a shifted 
critical temperature Tc(J2). Setting A K  = 0 in (2.15) gives 

Kc(w2) =Kc(0)+2JZw2/.rr+O(w22), (2.16) 

from which it follows that 

T c ( K ) =  Tc(o)[l -(245/T)K +o(K2)] 
where 

K = J2/J1. 

(2.17) 

(2.18) 

Hornreich et a1 (1979) have calculated the phase boundary of ferromagnetic states 
of the ANNNI model by the method of Muller-Hartmann and Zittartz (1977). In this 
approach, one considers the fluctuations (suitably restricted) of the interface between 
two oppositely aligned phases and derives an approximation for the interfacial tension. 
The expression for the phase boundary, 

(2.19) 

follows from the temperature at which the resulting interfacial free energy vanishes. 
Selke and Fisher (1980) found that (2.19) was in reasonable agreement with their 
Monte Carlo results for 0 z s  J z / J 1  6 0.4, although some systematic deviation occurred 
for larger values. 

sinh[2(K1 - ~ K z ) ]  sinh 2K0 = 1, 

Setting J1 = Jo, we can easily expand (2.15) to first order in K, to obtain 

Tc( K ) = Tc( 0) [ 1 - K + 0 ( K  ‘)I. (2.20) 

Comparison of the result with (2.17) shows that despite the Monte Carlo agreement the 
Muller-Hartmann-Zittartz result is only approximate except at K = 0. The accuracy of 
the Monte Carlo results is however insufficient to differentiate between (2.19) and 
(2.20), the error in the coefficient of K being about 10%. This error is comparable to 
that found in other failures of the Muller-Hartmann-Zittartz approximation (see e.g. 
Burkhardt 1978, Baxter and Tsang 1980, Baxter et a1 1980, Zittartz 1980, 1981b). 

2.3. Shift in critical coupling-quantum Hamiltonian limit 

The analogies between statistical mechanics and quantum field theory (see e.g. Kogut 
1979) have been extensively exploited in recent years. In the case of the ANNNI model, 
Barber and Duxbury (1981a) (see also Rujan 1981) have shown that in the anisotropic 
limit 

J o + a o ,  J2 = K J 1 +  0, A = pJ1 exp(2pJo) = 0(1), 12.21) 
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the phase diagram can be explored by studying the ground state of the quantum 
Hamiltonian 

(2.22) 

Here the spatial dimension (corresponding to the x direction of the original ANNNI 
model (1.1)) is a discrete chain but time (corresponding to the y direction in (1.1)) is 
continuous, the limit (2.21) effectively forcing the lattice spacing in the y direction to 
zero (see Fradkin and Susskind 1978, Kogut 1979). The U'S  appearing in (2.22) are 
Pauli matrices and A plays the role of temperature (A cc 1/ T). The ground state energy 
of (2.22) is now equal to the free energy of the ANNNI model in the limit (2.21). 
Assuming that this limit does not change the universality class of the Hamiltonian, 
universal parameters, such as critical exponents, then follow from the singularities of 
the ground state energy of (2.22) as a function of A. This was the approach adopted by 
Barber and Duxbury (198 la,  b), who constructed Rayleigh-Schrodinger perturbation 
expansions about the trivial limits A = 0 and A = 0;) for various physical quantities and 
then analysed these expansions by standard series methods. 

In the limit K = 0, (2.22) reduces to the one-dimensional transverse Ising model, 
which has been diagonalised analytically by Pfeuty (1970). This suggests that the 
behaviour for small K can be explored by perturbing about this point. To first order, 
standard Rayleigh-Schrodinger perturbation theory yields for the ground state energy 
per spin 

Eo(& K )  =&"(A) + A K ( U ~ U ~ + 2 ) o + O ( K 2 ) ,  (2.23) 

where ( * )o  denotes an expectation value over the unperturbed ( K  = 0) ground state. 
From Pfeuty's results we immediately have 

&''(A) = -- (1 + A 2  + 2A COS 6)1'2 de, 
n - 0  I" 

and 

I G(-1) G(-2) 
G(0) G(-1) ' 

(2.24) 

(2.25) 

with 
G(n) = L(n)  + AL(n + l), (2.26) 

L(n) = - 
P I" 0 ( l+A2+2c~s6)1 '2 '  decosn6 (2.27) 

The integrals appearing in (2.24) and (2.27) can be expressed as elliptic integrals, 

(2.28) 

from which it follows that the singular part of E:(A) is 

Eh:: ( A )  = (27r)-'(l - A ) 2  In11 - A  I +0[(1 - A ) 2 ]  

(c~'ma',+~)~ = (16/3.rr2)[1 + (1 - A )  In11 - A  I +0(1 -A)] 
and 

(2.29) 

as A + 1. This analysis is summarised in appendix 1. Comparison of these results with 
(2.11) and (2.12) confirms that the singularity structure of the ground state of the 
transverse Ising model (equation (2.22) with K = 0) is identical to that of the con- 
ventional Ising model. 
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We may now proceed as in 9 2.2. Substituting (2.28) and (2.29) in (2.23), we find 
that the resulting expression for the singular part, Eo,s(A, K ) ,  of the ground state energy 
is consistent with the expansion to O ( K )  of 

AA = 1 - A + 1 6 ~ / 3 ~  + O(K *) (2.31) 

so that 

l / A , =  1 - 1 6 ~ / 3 ~ + 0 ( ~ ' )  (2.32) 

which is the analogue of (2.17). 
The result (2.32) for the shift in the critical coupling may again be compared with 

that given by the Muller-Hartmann-Zittartz approximation (2.19), which in the limit 
(2.21) reduces to 

l / A , =  1-2K. (2.33) 

Since 1 6 / 3 ~  = 1.699 . . . , we note that the Miiller-Hartmann-Zittartz result is again in 
error at first order in K. 

We may also compare (2.32) with the phase boundary determined by Barber and 
Duxbury (198 lb)  from analysis of various weak-coupling perturbation expansions in 
1 / A .  This comparison is shown in figure 1, (2.32) being seen to be a very accurate 
representation of the numerical data for small K ,  whereas (2.33) lies outside the error 
bars. On the other hand, (2.33) appears (Villain and Bak 1981, Rujan 1981) to be 
asymptotically exact as K -+ 3, where T, and l/Ac vanish. A simple approximant, which 
satisfies (2.32) as K -P 0 and (2.33) as K + 3, is 

1-2K 
- 12.343 

As shown in figure 2, this result affords a rather accurate representation of the 
numerical results over the whole range 0 S K S f . 

1 
A, 1 - 2 ( 1 - 8 / 3 ~ ) ~ ( 1 - 2 ~ ) '  
_-  

We now turn to the expansion of the free energy of the ANNNI model for small 
nearest-neighbour interaction J1, i.e. K = J 2 / J 1  >> 1. In this limit it is convenient to 
divide the lattice into two sublattices and 0, and label the sites as indicated in figure 
3. We denote the spins R, and R, by U and T respectively; in terms of the original spins 
SI.,, 

U1.J = SZI,,, Ti,, = s21+1,,. (3.1) 

The Hamiltonian (1.1) can now be decomposed as 

H{u, 7) = Ho{g) + H o { T )  -k v{O, 71, (3.2) 

where 
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K 

Figure 2. Ferromagnetic phase boundary of the ANNNI Hamiltonian (2.22) ground state. 
The full dots (*)  are the results of analysis of weak-coupling expansions (Barber and 
Duxbury 1981a, b), the error bars being smaller than the size of the dots. The lines depict: 
- the approximant (2.34), ---the Muller-Hartmann-Zittartz result (2.33) and - - -the 
first-order perturbative calculation (2.32) about K = 0. 

Figure 3. Sublattices iZ, and 0, (see text) of the ANNNI model. 

(3.4) 

(3.5) 

3.1. The unperturbed system (J2 = 0)  

For J1 = 0, the system decouples into two nearest-neighbour Ising models (one on R, 
the other on 0,). Each of these models has antiferromagnetic interactions ( -Jd  
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horizontally and ferromagnetic interactions (Jo)  vertically?. The partition functions for 
both lattices can now be expressed in terms of that of an anisotropic ferromagnetic 
nearest-neighbour model by making the transformation 

ut,/ + = ( - )'cl,/, Ti,j -+ T:,J = ( - )'Tz,p (3.6) 

Clearly the new spins U' and 7' are again Isingspins. Thus the partition function of the U 
spins 

13.7) 

Here Z ~ ) Z  (KO, K2) denotes the Onsager (1944) result for the partition function of a 
square lattice Ising model of $N sites with anisotropic ferromagnetic interactions Jo and 
J z  in the y and x directions respectively. An identical result holds for the T lattice. 

Thus for J1  = 0, the ANNNI model (1.1) exhibits a conventional Ising singularity at 
p = pc determined by 

Z'O' 
= N/2 (KO, K2)* 

sinh 2pJ0 sinh 2pJ2 = 1. 

pfs(K1 = 0, KO, K 2 )  -A(Jo, J2)t2 In/?/ . . . 

13.8) 

Specifically, the singular part of the free energy varies (generalising (2.11)) as 

(3.9) 

as t + O ,  where t=( l -pc /p )cc (T-Tc ) .  

3.2. Expansion to O(J:)  

To consider the effect of non-zero J 1  on the critical behaviour, we now expand the 
partition function of (3.2), 

to second order in K1, where K, = pJi 3 0 .  It is again convenient to apply the 
transformation (3.6) so that the unperturbed Hamiltonian is completely ferromagnetic. 
The perturbation V then becomes 

(3.11) 

Defining 

W I  = tanh pJ1, (3.12) 
we have 

exp(-pV) =(coshKl)[ l+ w l U +  W:UZ+O(W:) ] ,  (3.13) 

t The fact that R, and R, are rectangular rather than square has no effect on the subsequent argument, the 
lattice parameters not entering the thermodynamic quantities. 
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where 
(3.14) 

(3.15) 

=(cosh K I ) ~ [ Z $ ) Z  N o ,  K2)12[1 + wi(Ui)o+ w:(Uz)o+O(w:)I, 
(3.16) 

where ( - )o  denotes an expectation value with respect to the unperturbed Hamiltonian, 
HO,= = H &  {a’} + Hb {T’}, where Hb {a’} and Hb (7‘) are given by (3 .3)  and (3.4) respec- 
tively with J2 replaced by -J2. Thus in calculating ( Ul)o and (U& the products of a’ 
and T’ spins decouple and can be expressed in terms of correlation functions of the 
ferromagnetic Ising Hamiltonians Hb {a’} and Hb (7’). 

The expectation value of Ul vanishes event for T C T,, while some algebra reduces 

(U&= -N+&W”(l ,  O)+N@(Ko,KZ), (3.17) 
(U2)O to 

(3.18) 

is the pair correlation function of the ferromagnetic anisotropic nearest-neighbour Ising 
models Hb {U’} and Hb {T’}. The function 

(3.19) 

where A is a lattice difference operator defined by 

A g ( i , j ) = g ( i , j ) - $ g ( i - l , j ) - i g ( i + l , j ) .  (3.20) 

Substituting (3.17) in (3.16) yields the required expansion of the free energy per spin 

Pf(K0, K1, K2) 

= lim --lnZN 

= Pf(O’(K0, K2) -cosh K1+ w: ( 1  -$I‘(l, 0 )  -@(KO, K2)) + O(w:)  

N -CO (1: ) 
(3.21) 

where Pf’o’(Ko, K2) is the Onsager free energy for anisotropic nearest-neighbour 
couplings KO and K2. 

Expanding (3.20) in the lattice spacing ( 2 a )  of the lattice a, in the rdirection allows 
A to be approximated by 

A = - ~ u ~ ~ ~ / ~ x ~ + O ( U ~ ) .  (3.22) 

The integral test can then be used to show that the sum in (3.19) converges even at the 
critical temperature where ro(k,  1) - R-1’4 with R an appropriately scaled distance of 
(k, 1) from the origin (see (3.25)).  

t Strictly speaking, for T < T,, the expectation values should be calculated for a finite value of an appropriate 
symmetry breaking field which is then taken to zero. 
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3.3. Analysis near criticality 

We now investigate the behaviour of the singular part of (3.21) near the critical 
temperature & of the unperturbed system, (51 = 0), where p c  is given by (3.8). The 
significant feature of (3.21) is the quadratic dependence of the function @(KO, K 2 )  on 
the pair correlation function ro. Now, 

(3.23) 

for all ( i , j )  (Fisher and Burford 1967, Wu et a1 1976). Thus we expect CP to contain 
terms involving t In(t1 and t2(In1t()2, which can be indicative of a marginal operator 
(Kadanoff and Wegner 1971). However, some care is required in explicitly evaluating 
the coefficients, since (Wu et a2 1976) 

E(i, j )  - Ri’4, Rij + m, (3.24) 

To( i , j )  = r0,Ji, j ) - -E( i , j ) t  lnlt/ . . . , t + O ,  

where 
R , ,  = [ (sinh ’KO) 1’2i2 + (sinh “2) 1’2j2] l J 2  

sinh 2K2 sinh 2K0 (3.25) 

is an appropriate radial measure of distance. Thus a direct substitution of (3.23) into 
(3.19) leads to divergent sums. 

To analyse CP in the limit @ + &, we write 

CP = CP, + a>, (3.26) 

where CP< (CP,) is defined by (3.19) but with the sum restricted to lattice sites ( k ,  I )  inside 
(outside) the elliptical region 

3 = {(k, 1)IRki ro). (3 .27 )  

Since the sum CP< is now a finite sum, we can substitute (3.23) directly to obtain 

CP, = @,,,-p,t Inltl+4<(t ln(t02. . . , (3.28) 

where 

(3.29) 

(3.30) 

The sum CP, requires more care. We assume that (i) ro >> a, the lattice spacing, and 

r ( k ,  I )  = t”*F(Rt). (3.32) 

The sum can now be replaced by an integral with A approximated by (3.22). This yields 

(ii) t << 1, so we can replace r(k, I) by its scaling form (Wu et a1 1976) 

a’ 
ax 

a>==- t’” 11 dxdy F(Rt)  7 [F(Rt) ] .  
( X , Y ) d W  

(3.33) 

The region 93 can be mapped into a circle by the change of variables 

X = A 1J2x,  Y = y / A  I J 2 ,  (3.34) 
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where 

A = (sinh 2Kolsinh 2K2)1/2. 

Under this transformation the integral in (3.33) reduces to 
.m -2 

@, = -2~rAt”~ J R dR F(Rt) G F ( R t )  
ro ax 

927 

(3.35) 

(3.36) 

with R 2  = X 2  + Y2. The integral is now symmetric in X and Y. Thus we can replace 
az/ax2 by 

$v2=-(-+-)=--R-. l a 2  a’ 1 d  d 
2 ax2 ay2 2R dR dR 

(3.37) 

Finally, defining 

p = tR, (3.38) 

we obtain 

@, = -TrAt’/2G(tro), 

where 

(3.39) 

(3.40) 

In appendix 2, we show that 

,G(z)  = gOz-’I2[1 - d0z1/2-5z(ln z + y)+$(z  In Z ) ~ + O ( Z ~  In z ) ]  (3.41) 

as z + 0, where go, do and y are constants (depending on Jo and J2) .  Substituting this 
result in (3.39) and combining with (3.28) yields 

@(KO, Kz) = @,+2~rAQolt1’/~-pt lnltl--p’t+qt2(lnlt1)2+O(t2 1n)tl). (3.42) 

The coefficients in this expansion are functions of Jo and J2, explicit formulae for the 
coefficients go, 60 and y in (3.41) being given by (A2.23)-(A2.25), with QO given 
explicitly in (A2.21). 

The required expansion of the singular part of f (Ko,  K1, K2) for p near pc = 
&(KO, K2) now follows on substituting (3.42), (3.23), together with (3.9), in (3.21). This 
gives 

BfAKO, K1, K2) 

=A(Jo, Jz)t2 lnltl+ w:{2~rAQ~/t(’/~ 

+[P +&(I, o)]t lnltl -qt2(lnltl)2)+. . . , t + O .  (3.43) 

The correction terms in this expansion are O(t3 In t) fromf’ and O(w?t2 In t )  from a. 
In addition, all non-singular terms have been absorbed into the regular part of 

The significant feature of the expansion (3.43) is the presence of powers of lnltl. It 
was a similar occurrence of such factors in their perturbation expansion of the free 
energy of the eight-vertex model that led Kadanoff and Wegner (1971) to argue that 

f W o ,  K1, K2). 



928 M N Barber 

they are indications of a marginal operator. The perturbation expansions of the 
NN/NNN model (Barber 1979) and the Ashkin-Teller model (Zittartz 1981a) also 
exhibit such factors, again suggesting marginal behaviour. The existence of a marginal 
operator, in turn, implies the possibility of non-universal behaviour. However, (3.43) 
differs significantly from the expansions found in these earlier calculations by the 
presence of a term of order w:t l ' * .  If this was absent, the logarithmic terms could be 
simply re-exponentiated to give a non-universal line along which the singular part 
varies as t2-" with a a function of KO, K I ,  K2. 

3.4. Scaling form 

To account for the term in (3.43) of order w:tl" we need a more complex form for the 
free energy than that implied simply by a non-universal specific heat exponent. 
However, any attempt to guess one solely on the basis of (3.43) must be fairly 
speculative. Perhaps the most simple ansatz for the free energy, in the light of (3.431, is 
to write 

pfs(Ko, Kl, K 2 ) t - A [ i 2 - " Q ( ~ ~ / r ~ ) - i 2 ] / * ( w 1 j  (3.44) 

Q(z) = 1 + Qlz + O ( z 2 )  

where 

as z + 0. (3.45) 

This reproduces (3.43) in the limit w1 + 0 if 

Qi = 4.rrhQoq/A2, 13.46) 

(3.47) 

a = (2q/A)w: +O(W: ) ,  13.48) 

(3.49) 

4 = 2 -* 4, 

i = t + ~ ( w : ) ,  

with 

E ( w : ) = [ p  + ;E( 1,0)]/A + O( w :  ) (3.50) 

and A is the unperturbed (J1 = 0) amplitude (recall (3.9)). 
Equation (3.48) implies that the critical temperature varies as 

where the coefficient q is a complicated function (which we have not evaluated) of the 
coupling parameters. A quadratic dependence, such as (3.51), is consistent with the 
series results of Barber and Duxbury (1981b) and is also predicted by the approximate 
boundary found by Pesch and Kroemer (1981) using the Muller-Hartmann-Zittartz 
method. Unfortunately, as noted in the Introduction, (3.44) does not give any 
information on the behaviour as T + TJJI) ,  since in this limit the argument w?/i* tends 
to infinity. Hence the critical behaviour at finite non-zero J 1  is determined by the 
asymptotic behaviour of the function Q ( x )  as x -+ Co. 

We shall discuss some of the other physical implications of (3.44) further in 9 5. 
Before doing so we show that the ~ A S C  model for small A has a similar perturbation 
expansion to (3.43). 
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4. ~ A S C  model tor small A 

4.1. Spin representation of 4ASC model 

We consider the asymmetric clock model (1.2) with p = 4 and A = (A, 0). We introduce 
king spins ui and T~ via the relations 

(4.1) 
1 1 1 cos(grni) = ~ ( c q  - T ~ ) ,  sin(fmi) = 3(ui  + T ~ ) .  

Hence on expanding the cosine in (1.2) we obtain 

where eii = 1 if (i, j )  is a horizontal bond and zero if (i, j )  is vertical. It is convenient to 
label the sites of the lattice by (m, n) and write the sum in (4.2) as a sum over sites, i.e. we 
write 

H 4 A S C =  -iJ C [(COS $ v A ) ( g m . n u m + l , n  +Tm,nTm+l,n) 
(m,n)  

This is our required spin-representation of the ~ A S C  model. For A = 0 the de- 
coupling into two independent isotropic nearest-neighbour Ising models is apparent. 
While the spins um," and T ~ , "  were introduced on the same site, it is informative to 
regard them as populating different lattices and to regard (4.3) as referring to a 
two-layer geometry as illustrated in figure 4 ( b ) .  

Figure 4. Two-layer representations of ( a )  the ANNNI model (4.4): U spins (e), 7 spins ( 0 ) ;  

interactions: -10 (-1, -J1 (-e-),  -J2 (---I, +&(= = =); ( b )  the ~ A S C  model (4.3): U 

spins (01, T spins (01; interactions: -$J cos(4lrA) (-), -$J (-e-), -$J sin($rrA) (---), 
+$J sin(&rA) (= = =). 

4.2. Relation to ANNNI model 

The form (4.3) is rather, but not exactly, similar to the form of the ANNNI model 
Hamiltonian in the two-lattice representation introduced in the previous section. t 
t The ANNNI model can also be regarded as a four-state model (see appendix 3); the spin representations are 
however more useful for our purposes. 
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Explicitly from (3.3)-(3.5) we have 

HANNNI = -1 [JO((+m.n(+m.n+1 i- 7tmnTm.n 7 1) 

+ J2((+m,n(+m+l,n + Tm,n7m-I.n)-J l (+m,n(Tm.n - 7 ,  l . r z j I 9  (4.41 

where the sum is restricted to one sublattice, say Cl,, and we have applied the 
transformation 13.6). With the correspondence 

J ~ ) + +  I J ,  J ,  +-+ iJ  sin ;AT, J2 c-, J COS ;AT, (4.5) 

(4.4) and (4.3) are remarkably similar. There is however a subtle topological difference 
due to the (+ and T spins now being on different sites of the original lattice. This 
difference is most clearly seen if we regard the ANNNI model (4.4) as a two-layer system 
as shown in figure 4(a). Comparison of figures 4(a) and 4(b) shows that in the ANNNI 

model the two layers are shifted relative to each other whereas in the ~ A S C  model the 
layers are superimposed. This topological difference is reminiscent of that between the 
eight-vertex and Ashkin-Teller models when regarded as two sublattice (layer) 
systems. As in that case, this difference must ultimately lead to distinctly different 
behaviour in the two models. However, to second order in A, the perturbation 
expansions are identical under the correspondence (4.5); only at higher order does the 
topological distinction become apparent. Thus we can take over the analysis of § 3 and 
conjecture that the singular part of the free energy of the 4ASC model (with K = P J )  
behaves as 

pfs(K, A) cz - A [ i 2 - " O ( w 4 / j ~ ) - i Z ] / ~ ( ~ )  (4.6) 

with 

w = tanh{~K[sin($A~)]} = KA77/4 + O(A3) 14.7 1 

and the other quantities as defined in (3.45)-(3.50). 

5. Conclusion and discussion 

In the preceding three sections we have analysed the structure of the perturbation 
expansions of the two-dimensional ANNNI and ~ A S C  models about points at  which these 
models reduce to simple Ising models. The main conclusions emerging from this 
analysis are the following. 

(i) For small J2, the ANNNI model continues to exhibit an Ising-like transition. The 
Muller-Hartmann-Zittartz result (2.19) is however in error at first order in K = J 2 / J I .  
The principal formulae are (2.20) and (2.17). 

(ii) For small J1, i.e. large K = J2 /J1 ,  the perturbation expansion around J I  = 0 is 
considerably more complicated (expression (3.43)). Indeed, the coefficient of the 
second-order term is more singular than the unperturbed free energy. This suggests 
that the perturbation is valid only for fixed T > T,(J1) and breaks down as T approaches 
Tc(J1). On the basis of the singularity structure of the perturbation expansion to second 
order in w1= tanh pJ1 ,  we then conjectured a scaling form (3.44) for the free energy in 
the uniform limit J1 + 0, T -* T,. 

(iii) To second order in A, the perturbation expansion of the free energy of the 4ASC 
model is identical (under an appropriate correspondence of coupling constants (4.5)) to 
that found for the ANNNI model about K = CO (J1 = 0). This suggests that the ~ A S C  model 
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for small A and the ANNNI model for large K behave similarly. This is probably the most 
significant conclusion of the paper and one we now want to discuss in more detail. 

The topology of the phase diagrams of the two-dimensional ANNNI and ~ A S C  
models, that has emerged from recent work (for detailed references see 9 l ) ,  is 
illustrated in figure 1. Our main interest is in the regions of large K in the ANNNI model 
and of small A in the ~ A S C  model?. 

The phase diagram for the ANNNI model, depicted in figure l (a ) ,  is based primarily 
on the results of the analysis of extensive weak-coupling (low-temperature) and 
strong-coupling (high-temperature) expansions in 1 / A  and A respectively of the 
quantum Hamiltonian analogue (2.22) (Barber and Duxbury 1981a, b). As discussed 
in P 3, the results of this analysis for .K <$ agree extremely well with the boundary 
deduced from the expansion around K = 0. For K 3 1.1 , Barber and Duxbury (198 lb)  
concluded that only a single transition occurred directly from the paramagnetic phase to 
the (2,2) antiphase state; i.e. the incommensurate phase does not persist to K =Co.  

However, the accuracy to which the boundary could be located from both sides is much 
less than for K <;. Thus the possibility of a thin 'tongue' of incommensurate phase 
extending to K = 00 cannot be completely excluded. Subsequent finite-lattice cal- 
culations (Barber and Duxbury 1981a, Duxbury and Barber 1981) also tend to favour a 
single transition but likewise would have difficulty resolving a very thin strip. 

Evidence that the incommensurate phase in the ANNNI model does extend to K = 43 
comes from Monte Carlo calculations (Selke 1981) of (1.1) on finite lattices. At least for 
K < 4  (the extent of the simulations), Selke found evidence (specific heat peaks, 
non-zero wavevector modulation of the ordered phase) for two transitions. However, 
this conclusion is also not equivocal since the two apparent transitions could conceiv- 
ably coalesce for an infinite system. 

Turning now to the ~ A S C  model, the situation is less satisfactory because of a lack of 
any quantitative data on the phase diagram. The diagram depicted in figure l ( b )  is that 
suggested by Ostlund (1981) who argued that the incommensurate phase persisted to 
A = 0. His argument is however qualitative and can be summarised as follows. Recall 
the behaviour of the p-state symmetric clock models. For p > 4, these are known to 
exhibit two transitions with the intermediate phase massless (JosC et a1 1977, Elitzur et 
a1 1979, Cardy 1980). The intermediate phase can be mapped (by renormalisation 
group arguments) onto the fixed line of the gaussian model, the two transitions then 
corresponding respectively to vortex fugacity and the p-state symmetry breaking field 
becoming relevant. Physically, the two transitions can be characterised (Einhorn 
et a1 1980) as due to vortex unbinding (at T = Tu) and domain wall formation 
(at T = T, < Tu). 

In the four-state symmetric models, the two transitions coincide, the temperature 
corresponding to the gaussian model point at which the four-state symmetry breaking 
field and the vortex fugacity are simultaneously marginal (JosC et a1 1977). Ostlund 
(1981) then argued that in the asymmetric models, the role of A is to separate the two 
transition mechanisms leading, even in the four-state model, to two transitions at 
distinct temperatures$. That is, in essence A acts to effectively increase p .  The 
weakness of this otherwise rather attractive argument lies in its tacit assumption that A 
itself is at worst marginal at the point A = 0. The relevance of A as exhibited by our 
perturbative results suggests that the behaviour for A > 0 could be significantly 

t The 4ASC model is symmetric about A = f so our remarks apply equally to A near 1. 
$ I am grateful to Dr M Einhorn and Dr J Hirsch for a very illuminating discussion on this point. 
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different. Clearly, a quantitative investigation of the phase diagram of the ~ A S C  model 
would be of considerable interest. 

One other point should be mentioned at this stage. It is conceivable that the 
difference between the conclusions of Barber and Duxbury (1981a, b) and of Selke 
(1981) concerning the ANNNI model is due to the Hamiltonian limit, i.e. the ANNNI 
model in the extremely anisotropic limit (2.21) behaves differently than when the 
anisotropy of the nearest-neighbour interaction is finite (the situation in Selke’s Monte 
Carlo work). While there is no evidence that a Hamiltonian limit such as (2.21) is not 
innocuous, it is certainly the case that certain effects can be much smaller in the 
Hamiltonian version of a theory. For example, the extent of the massless phase in the 
Hamiltonian version of the symmetric five-state model is very small (Hamer and Barber 
1981), whereas in the isotropic model a rather more extensive phase appears possible 
(Domany er a1 1980). A similar effect could easily occur in the ANNNI model. At this 
stage, however, no firm conclusion on the precise details of the phase diagram of either 
the ~ A S C  or the ANNNI model can obviously be drawn. 

Despite the rather unsatisfactory situation described in the previous paragraphs it is 
interesting at least to speculate on some of the other implications of a form such as 
(3.44) for the free energy of the ANNNI model near K = O3 and the ~ A S C  model near 
A = 0. The first concerns the possible non-universality apparent in (3.44). For this to be 
actual and not effective in the sense discussed in § 1, the scaling function Q ( z )  of (3.44) 
would need to satisfy 

Q ( z ) =  Q m + o ( l )  asz+co.  (5.1) 
We know of no evidence from other methods to suggest that the phase boundary for 
large K is truly non-universal. Indeed, the precise nature of the transitions is unclear, 
the quantum Hamiltonian series of Barber and Duxbury (1981a, b), for example, being 
too short and irregular to do more than locate the boundary. On the other hand, the 
order parameter in the antiphase state is two-dimensional, 

(5 .2 )  

being a possible representation, where qm = 27r(m - 1)/4. The appropriate Landau 
free energy, incorporating the relevant symmetries of ( l . l ) ,  then has an expansion 
through fourth order of the formt 

( 5 . 3 )  

This is of the same form as the Landau free energy of the Ashkin-Teller or eight-vertex 
models for which non-universality is known to occur. The relationship between the 
ANNNI model and the eight-vertex model has also been discussed by Rujan (1981), who 
showed that (1.1) could be mapped onto an eight-vertex model with direct and 
staggered fields. While this mapping does not necessarily imply non-universal 
behaviour, the possibility should clearly be kept in mind, particularly if the phase 
diagram is as shown in figure l ( a )  with a single phase boundary for large K .  

Finally, we note that if the incommensurate phase does indeed persist to K = 03 in 
the ANNNI model or to A = 0 in the ~ A S C  model, several conjectures are available for the 
nature of the transitions. The upper transition from paramagnetic to incommensurate 

F = r / ~ 1 4  + U 1414 - V(C//I/J* + $*$). 

+ For a review of the classification of phase transition by symmetry arguments based on Landau free energy 
expansions see Barber (1980). 
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is expected (Garel and Pfeuty 1976) to be in the same universality class as the d = 2 
planar rotor model and thus to exhibit a Kosterlitz-Thouless transition. Evidence for 
this type of behaviour is apparent in the Monte Carlo simulations (Selke and Fisher 
1980, Selke 1981) and more weakly in the quantum Hamiltonian data (Duxbury and 
Barber 1981). Such behaviour is also expected in the ~ A S C  model (Ostlund 1981, Cardy 
1981). 

At the lower transition (incommensurate to commensurate) much less is known. 
From the incommensurate side, a simple approximation-the ‘free-fermion’ approxi- 
mation-predicts a square root singularity in the specific heat (Villain and Bak 1981, 
Rujan 1981). On the other side, this approximation suggests that the specific heat is 
finite. However, the free-fermion approximation is not expected to describe the 
commensurate phase particularly well and the true behaviour is an open question. 

These various possibilities can obviously be incorporated into an appropriate form 
for the function Q ( z )  in (3.44) at large z. However, in the absence of more substantial 
grounds for the validity of (3.44) this is rather a speculative exercise. 
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Appendix 1 

In this appendix, we outline the analysis of the first two orders of the expansion (2.23) 
for A near A, = 1. The unperturbed ground state energy 

reduces easily (Pfeuty 1970) to the elliptic integral of the second kind, 
“/ 2 

E ( k )  = ID (1 - k 2  sin2 de. 

(Al . l )  

(A1.2) 

Explicitly we have 

E~’)(A) = - ( 2 / ~ ) ( 1  + A ) E ( ~ ) ,  (A1.3) 

where 

k 2  = 4A/(1 + A ) 2 .  (A1.4) 

Turning to the second-neighbour ground state correlation  fa;+^)^ given by 
(2.25)-(2.27), we find that the three integrals L ( n ) ,  n = 0, 1,2, required can be 
expressed in terms of E ( k )  and the elliptic integral of the first kind 

(A1.5) 
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Some straightforward but tedious algebra then gives 

(afa;+z)o = [3**A2(1 + A)*]-’[(l+ A)4(5  -A2)E2(k)  + (1  - A2)3K2(k) 
-2(1 +A)’( 1 - A  2)(3 + A  ’ ) E ( k ) K ( k ) ] .  (A1.6) 

The asymptotic expansions (2.28) and (2.29) then follow from (A1.3) and (A1.6) via the 
expansions (Byrd and Friedman 1971) 

~ ( k )  = 1 +3(kr)2[ln(4/k‘)-3]+~(k’4 In V I ,  
K ( k )  = ln(4/kr)+f(k’)’[ln(4/k‘)- 1]+0(kr4 In k’) ,  

(Al.7) 

(A1.8) 

where 

k’= (1 - k2)1/2=(1 - A ) / ( l  + A ) .  (A1.9) 

Appendix 2 

In this appendix, we expand the function (see (3.40)) 

for small z. The function F(p) appearing in the integrand is the scaling function of the 
pair-correlation function defined in (3.32) of the anisotropic nearest-neighbour Ising 
model with interactions .To and J2. We shall require the following properties of F ( p )  
(Wu et a1 1976): 

F ( p )  = O(e-’), p + a ,  (A2.2) 

~ ( p ) = ~ ~ p - ” ~  e-p’2[1+4p l n p + i b p + ~ ( p ~ l n p ) ] ,  p + O ,  (A2.3) 

where 

Fo = (sinh 2PJo+sinh 2&.T2)1/8 e1’421’2CG3, (A2.4) 

with Pc determined by (3.8) and 

CG= 1.282247. . . (Glaisher’s constant) 

and 

b = CE-3 In 2 +  1 = -0.50226.. . , 
with 

CE=O.577216.. . (Euler’s constant). 

(A2.5) 

(A2.6) 

(A2.7) 

Integrating (A2.1) by parts and using (A2.2) gives 

G(z )  = -zF(.z)F’(z)-  &(Z), (A2.8) 

with 

(A2.9) 



Perturbation expansions of the ANNNI and 4ASC models 935 

To expand d(z)  for small z, we write it as an inverse Mellin transform: 
+ ,c+im 

with 
CO 

M(p) = 1 z’-’G(z)dz = -I jOm z’d’(z)  dz, 
0 P 

provided R e p  >$ which fixes the contour in (A2.10). 
Substituting (A2.9), we then have 

1 “  
P o  

M(p) = - Z ” ” [ F ’ ( ~ ) ] ~  dz. 

(A2.10) 

(A2.11) 

(A2.12) 

For small z ,  the integrand in view of (A2.3) behaves as zpc1-5/2 so that M(p) is analytic 
for R e p > + .  

The required expansion of 8 ( z )  now follows from (A2.12), successive terms of 
increasing order in z following the sequence of singularities of M(p) for Re p < 3. To 
determine these, we write 

(A2.13) [F’(p)]’ = &Fi e-’p”’’+ w ( p )  

where, as p -* 0, 

w ( p )  = -& F i  e-pp-3/2[ln p + b - &J ln2 p + O ( p  In p ) ] .  (A2.14) 

Hence 

1 1 “  
M(p)=--Fir(p- i )+-  Io z’+lw(z) dz, 

16P P 
(A2.15) 

where r(4) is the gamma function. Substituting (A2.14) in the integral in (A2.15) gives 

jom z p + l w ( z )  = - ~ F ~ [ r f ~ p + + ) + b r ( p + + ) - a r r f ( p  + ; ) I+R(~) ,  (A2.16) 

where R (p) is analytic for Re p > -5 and has a double pole at p = -2. Hence R (p) gives 
a contribution to & ( z )  of O(z3/’ In z )  which is of higher order than we shall require. The 
required terms follow from the singularities of M(p) in -! G p S 1, which are revealed by 
the expression 

~ ( p )  =--~;[r(p -+)--3ryp +5)-3br(p ++)+($ ) r r ’ (p+b]+~(p ) ip ,  (A2.17) 

together with the known behaviour (Whittaker and Watson 1965) of the gamma 
function as 4 -* -r, r = 0, 1,2, . . . : 

1 
16P 

U 4 )  = - ( - I‘ + O(1): 
(4 + r)r! 

(A2.18) 

(A2.19) 

(A2.20) 
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where in (A2.19) $(q)  = d In I'(q)/dq. These results give the residues of all the required 
poles of M ( p )  in - + s p  s $, except that at p = 0. This is most easily determined by 
returning to (A2.15), which yields 

Qo = lim p M ( p )  = -F: &/8 + z w ( z )  dz, 
P-0 loX 

the convergence of the integral being assured by (A2.2) and (A2.14). 
A straightforward asymptotic analysis now gives 

i,A2.2 1 ) 

6 ( z )  = Qo+(F&-"2/8)[1+3z In z +(3$(1)+3b -5)z -2z2(1n z ) ~ + O ( Z ~  In z ) ]  
(A2.22) 

where $(1) = -CE. Combining this with the expansion of F(z)F'(z) that follows from 
(A2.3) finally yields (3.4 1) where the coefficients are given explicitly by 

go = Fi/8 = (sinh 2&J0 + sinh 2&J2)1'4 e"2CG6/4, (A2.23) 

60 = 8Qo/F;, (A2.24) 

y = -3 In 2 + 2( 1 + CE)/5. (A2.25 ) 

Appendix 3. The ANNNI model as a four-state model 

For completeness, we formulate, in this appendix, the ANNNI model as a four-state 
model. To do so consider the Hamiltonian (1.1) and define 

(A3.1) (1 )  ( 2 )  Sk.1 = (S2k.h S 2 k t 1 , i )  = (Sk,lt Sk.1). 

Then we can write (1.1) as 

where the sum is over the sites of a square lattice and 

V , ( S )  = -J1Si1 's '2 ' ,  

iA3.2) 

iA3.3) 

v; (S,  S')  = -JoS ' S', (A3.4) 

V,(S, S') = J2S * s'-J1S'2'S"'. (A3.5) 

The new variables S = (S"', S'2') are obviously four-state variables. The similarity to 
the ~ A S C  model is revealed if we introduce 'angle' variables 

(A3.6) 8 = O,.r/2, T, 3 ~ / 2  

by the relations 

s"' = cos 8 -sin = JT cos(@ + .r/4), 

S'2' = cos 0 +sin 0 = 45 sin(@ + ~ 1 4 ) .  

( A 3 . 7 ~ )  

(A3.7b i 

Hence we obtain 

vI(s) = - J ~  COS 2 4  

Vb (S,  S')  = -2Jo cos(@ - Of),  

V2(S ,  S') = 2J2 cos(@ - 0') - J1  cos(@ t 0') -J1 sin(@ - 0'). 

(A3.8) 

(A3.9) 

(A3.10) 
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The expression for V2 can be further simplified by combining the first and last term to 
give 

(A3.11)  v2(s, s') = - J ~  cos(e + e') + J,R cos(e - e'+ A) 

with 

R = ( 1  + 4J:/J: (A3.12)  

and 

A = tan-'(J1/2J2), (A3.13)  

the arc tangent to be taken in the first quadrant. Substituting (A3.8) ,  (A3.9)  and 
(A3.11) into (A3.2)  gives the required representation of the ANNNI model as a 
four-state clock model, namely 

H = - [ J ~  COS 2ekSl + 2~~ cos(ek,l - 
(k.0 

+ Ji COS ( & , I  + & + i , i )  - RJi cos(&.r - &+I,[ + A)] (A3.14)  

with 8 = 2 r n i / 4 ,  ni = 0,  1 , 2 , 3 .  The similarity, but not equivalence, to the ~ A S C  model 
as defined in (1.2) is evident. 
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